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SUMMARY

The incompressible, laminar, isothermal ¯ow of a Newtonian ¯uid at steady state past a surface-mounted
obstacle (¯ow over a step) is studied in a two-dimensional numerical experiment using the Galerkin ®nite
element method. The dimensionless Navier±Stokes equations are solved in the whole range of the laminar ¯ow
regime. The numerical predictions are compared with available experimental data. The emphasis in the
discussion of the results is on the presentation of the streamlines for various Reynolds numbers, the pressure
distribution over and downstream of the step, the shear stress distribution along the surface of the step and the
length of the recirculation region as a function of the Reynolds number. This analysis may be used in numerous
applications from agricultural to civil, mechanical and chemical engineering. # 1997 by John Wiley & Sons,
Ltd.
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1. INTRODUCTION

The ¯ow over a surface-mounted obstacle is a combination of the ¯ow over a forward- and backward-

facing step. This ¯ow is considered a good prototype for numerous applications in industry, including

the study of air pollution, power plant location, wind loading on tall buildings,1,2 turbomachines,3 car

aerodynamics,4 cooling of electronic equipment and gas-cooled reactors,5 meteorology and wind

energy applications,6 ¯ow over road embankments and modern architectural buildings7 and design of

¯uid-handling devices.8 In addition, the two elementary components of this ¯ow, the forward- and the

backward-facing step, are quite often used as test cases for new developments in numerical

algorithms,9±11 in out¯ow boundary conditions12±14 and in answering fundamental questions of

computational interest regarding these ¯ows.15.

In the numerical study of turbulent ¯ow over a surface-mounted obstacle, there have been

numerous attempts to solve the problem using the standard k±e model and various modi®cations of it,

with partial success considering the comparisons of numerical predictions with experimental

results.16±20 Apart from the inaccuracy of the turbulence models due to the incomplete understanding
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of turbulence, the discrepancy between numerical solutions and experimental data is also attributed to

reasons common to both laminar and turbulent models, such as the structure and re®nement of the

mesh,16 the height of the upper boundary and the appropriate boundary condition there,1,9 upstream

conditions1 and the still open-ended issue of out¯ow boundary conditions.14,21

In the numerical study of laminar ¯ow over a surface-mounted obstacle, early attempts to solve the

problem have been made by Greenspan22 and Friedman23 using ®nite differences. Later work by

Leone and Gresho24 represents still the most accurate numerical simulations reported to date. The

primary objective though of Leone and Gresho was to demonstrate that the conventional Galerkin

®nite element method is to be preferred in the solution of complex non-linear ¯ow problems over

recent upwind schemes. Therefore there is a lack of comparison of their numerical experiments with

available experimental data of Taneda25 and Acrivos et al.26 in the laminar ¯ow regime.

This work has been motivated by the need to calculate the pressure distribution of air along the

sides of greenhouses in agricultural engineering applications for a wide range of Reynolds numbers.

The ¯ow problem has been approached from the viewpoint of the numerical analyst who aims at the

design of numerical experiments in order to supplement physical experiments in the understanding of

the ¯ow phenomena around surface-mounted obstacles. The computational domain has thus been

chosen in such a way as to resemble actual wind tunnel experiments, as described in the next section.

In this way, shortcomings of previous numerical analyses regarding upstream conditions, location of

the upper boundary, etc. are alleviated.

The methodology of the work was to start by computing the limit of Stokes ¯ow, then advance to

higher Reynolds numbers and check the numerical experiments with corresponding physical ones and

®nally make predictions for this ¯ow in the whole range of the laminar regime. In the next section the

problem statement is described along with the governing equations for laminar ¯ow and the

appropriate boundary conditions (Section 2). The numerical method is then brie¯y explained (Section

3), the numerical predictions are presented, discussed and compared with available experimental data

(Section 4) and ®nally conclusions are drawn (Section 5).

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The computational domain for the ¯ow over a surface-mounted obstacle is shown in Figure 1. A

Newtonian ¯uid of constant density and viscosity approaches a closed wind tunnel with a uniform

velocity u0. At the entrance of the wind tunnel the ¯uid is decelerated along the wall owing to the no-

slip boundary condition and it approaches the surface-mounted obstacle, which is a step. Around and

in the vicinity of the obstacle, separation and reattachment of the ¯ow occur and the ¯uid leaves the

computational domain at a location where these ¯ow phenomena gradually fade.

Figure 1. Computational domain for ¯ow over a surface-mounted obstacle
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The ¯ow is laminar, isothermal, incompressible, two-dimensional, at steady state and the

dimensionless Navier±Stokes equations are

H ? u � 0; �1�
u ? Hu � ÿHp� 1

Re
H2u: �2�

Equations (1) and (2) represent the conservation of mass (continuity equation) and momentum

respectively. Here u � �u; v� is the velocity vector in the ¯uid, with u and v its components in the x-

and y-direction respectively, p is the pressure and Re � u0H=v is the Reynolds number, with u0 the

uniform approaching velocity of the ¯uid from the wind tunnel, H the height of the step and n the

kinematic viscosity of the ¯uid. The pressure p has been non-dimensionalized with the magnitude

ru2
0, with r the density of the ¯uid.

The boundary conditions for this ¯ow are depicted in Figure 1:

at the entrance
u � 1; �3�
v � 0; �4�

�
top and bottom boundaries

upstream of the wind tunnel
u � 1; �5�
v � 0; �6�

�
in the wind tunnel

u � 0; �7�
v � 0; �8�

�
along the obstacle surface

u � 0; �9�
v � 0; �10�

�
at the outflow : free boundary condition:

Equations (3) and (4) impose a uniform freestream at the entrance of the computational domain.

Along the top and bottom upstream of the tunnel, tow tank boundary conditions have been chosen

(equations (5) and (6)). The no-slip boundary condition has been imposed along the top and bottom

walls of the tunnel (equations (7) and (8)) and along the surface of the step (equations (9) and (10)).

The free boundary condition has been applied at the out¯ow in order to let the ¯uid leave the

computational domain freely without any distortion of the ¯ow in the interior. The next section

brie¯y outlines how this recent idea13,27 is included in the formulation of the ®nite element method by

evaluating the surface integral of equation (13). It is beyond the scope of this work to go into the

details of its implementation, which can be found elsewhere,28 or into its mathematical insight, which

has, to a signi®cant extent, been accomplished by Sani and Gresho14 and Heinrich and Vionnet;29

additional work on this subject can be found in References 30 and 31. However, a few runs are

presented that check the validity of the free boundary condition along with the rest of the results of

this work in Section 4.

3. FINITE ELEMENT FORMULATION

Two computational meshes that we believe guarantee mesh-independent solutions were used in this

work and are shown in Figures 2 and 3 respectively. In Figure 2 the surface-mounted obstacle is a

square of unit length in order to simulate the experiments of separated Stokes ¯ow of Taneda25 and to

make predictions in the whole range of the laminar regime. In Figure 3 the surface-mounted obstacle
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is a rectangle of width 0�45 and height 1 in order to simulate the experiments of Acrivos et al.26. The

details of the two computational meshes are summarized in Tables I and II respectively.

The unknown velocities u and v and the pressure p of the governing equations (1) and (2) are

expanded in terms of Galerkin basis functions as

u �P9
i�1

uif
i; v �P9

i�1

vif
i; p �P4

i�1

pici;

where fi are biquadratic and ci bilinear basis functions. The governing equations, weighted

integrally with the basis functions, resulted in the following continuity, Ri
C, and momentum, Ri

M,

residuals:

Ri
C �

�
V

H ? ucidV ; �11�

Ri
M �

�
V

u ? Huÿ H ? ÿpI� 1

Re
T

� �� �
fidV : �12�

Figure 2. Mesh tesselation of computational domain for simulation of Taneda's experiment25

Figure 3. Mesh tesselation of computational domain for simulation of Acrivos et al.'s experiment26
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Table I. Data of computational mesh of Figure 2

Number of elements 11199
Number of nodes 45313
Number of unknowns 102084
Matrix front width 453
CPU time per iteration 40 min
Location of step 54 x4 6
Height of step 04 y4 1

x-co-ordinate of nodes

ÿ1, ÿ0�75, ÿ0�5, ÿ0�25, ÿ0�125,0, 0�125, 0�25, 0�75, 1, 1�25, 1�5,
1�75, 2, 2�25, 2�5, 2�75, 3, 3�25, 3�5, 3�75, 4, 4�2, 4�3, 4�35, 4�4, 4�45,
4�5, 4�55, 4�6, 4�65, 4�7, 4�75, 4�8, 4�85, 4�9, 4�925, 4�95, 4�975, 5,
5�025, 5�05, 5�07, 5�1, 5�15, 5�2, 5�25, 5�3, 5�35, 5�4, 5�45, 5�5, 5�55,
5�6, 5�65, 5�7, 5�75, 5�8, 5�85, 5�9, 5�925, 5�95, 5�975, 6, 6�025, 6�05,
6�075, 6�1, 6�15, 6�2, 6�25, 6�3, 6�35, 6�4, 6�45, 6�5, 6�55, 6�6, 6�65,
6�7, 6�8, 7, 7�2, 7�4, 7�6, 7�8, 8, 8�25, 8�5, 8�75, 9, 9�25, 9�5, 10, 10�5,
11, 11�5, 12, 12�5, 13,. . ., 20, 21, 22, 23,. . ., 40

y-co-ordinate nodes

0, 0�005, 0�01, 0�015, 0�02, 0�025, 0�03, 0�04, 0�05, 0�06, 0�07, 0�08,
0�09, 0�1, 0�125, 0�15, 0�175, 0�2, 0�25, 0�3, 0�35, 0�4, 0�45, 0�5, 0�55,
0�6, 0�65, 0�7, 0�75, 0�8, 0�9, 0�925, 0�95, 0�975, 1, 1�01, 1�02, 1�03,
1�04, 1�06, 1�08, 1�1, 1�125, 1�15, 1�175, 1�2, 1�25, 1�3, 1�35, 1�4, 1�5,
1�6, 1�7, 1�8, 1�9, 2, 2�1, 2�2, 2�3, 2�4, 2�5, 2�6, 2�7, 2�8, 2�9� 3, 3�125,
3�25, 3�375, 3�5, 3�625, 3�75, 4, 4�25, 4�5, 5, 5�5, 6, 6�5, 7, 7�5, 8�25,
8�5, 8�75, 9, 9�25, 9�5, 9�75, 10

Table II. Data of computational mesh of Figure 3

Number of elements 8048
Number of nodes 32589
Number of unknowns 73425
Matrix front width 448
CPU time per iteration 20 min

Location of step 14 x4 1�45
Height of step 04 y4 1

x-co-ordinate of nodes

ÿ1, ÿ0�75, ÿ0�5, ÿ0�25, ÿ0�125, 0, 0�1, 0�2, 0�3, 0�4, 0�5, 0�6,
0�65, 0�7, 0�75, 0�8, 0�85, 0�9, 0�95, 1, 1�05, 1�10, 1�15, 1�2, 1�25,
1�35, 1�4, 1�45, 1�5, 1�55, 1�6, 1�65, 1�7, 1�8, 1�9, 2�2, 2�4, 2�8, 3, 3�2,
3�4, 3�6, 3�8, 4, 4�25, 4�5, 4�75, 5, 5�25, 5�5, 5�75, 6, 6�25, 6�75, 7, 7�5,
8, 8�5, 9, 9�5, 10, 10�5, 11, 11�5, 12, 12�5, 13, 13�5, 14, . . . , 25

y-co-ordinate of nodes

0, 0�025, 0�05, 0�075, 0�1, 0�15, 0�2, 0�25, 0�3, 0�35, 0�4, 0�5, 0�6, 0�7,
0�8, 0�9, 0�95, 1, 1�025, 1�05, 1�075, 1�1, 1�15, 1�2, 1�25, 1�3, 1�4, 1�5,
1�6, 1�7, 1�8, 1�9, 2, 2�1, 2�2, 2�3, 2�4, 2�5, 2�6, 2�7, 2�8, 2�9, 3, 3�125,
3�25, 3�375, 3�5, 3�625, 3�75, 4, 4�25, 4�5, 5, 5�5, 6, 6�5� 7, 7�7, 8, 8�5,
9, 9�5, 10�5, 11, . . . , 19, 19�25, 19�5, 19�75, 19�8, 19�85, 19�95, 20
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Here I is the identity matrix and T � Hu� �Hu�T is the stress tensor of the Newtonian ¯uid, with

H2u � H ? T (equation (2)). By applying the divergence theorem in order to decrease the order of

differentiation, equation (12) reduces to

Ri
M �

�
V

�u ? Hu�fi ÿ ÿpI� 1

Re
T

� �
? Hfi

� �
dV ÿ

�
S

n ? ÿpI� 1

Re
T

� �
fidS: �13�

Since essential boundary conditions for u and v are applied to all boundaries of the domain except for

the out¯ow, equation (13) will be replaced by equations (3)±(10). The inclusion of the surface

integral of equation (13) along the out¯ow boundary of the domain is essentially the imposition of the

free boundary condition in the FORTRAN-77 programme created by the authors for the computations

of this work. Details on the programming strategy and the actual implementation of the free boundary

condition for this problem can be found in Reference 32.

The residuals are evaluated numerically using nine-point Gaussian integration. A system of non-

linear algebraic equations results, which is solved with the Newton±Raphson iterative method

according to the scheme q�n�1� � qÿ Jÿ1R�q�n��, where q � �u1; v1; p1; . . . ; uN ; vN ; pN � is the vector

of the unknowns and J � @R=@q is the Jacobian matrix of the residuals R with respect to the nodal

unknowns q. The banded matrix of the resulting linear equations is solved with a frontal solver33 at

each iteration. The computer runs have been performed on a DEC OSF=1 V3.2-Alpha 7000-610 AXP

of the Democritus University of Thrace. Zeroth-order continuation has been used as an initial guess to

advance from one Re solution to another and the Newton procedure in all computer runs converged

quadratically in four to six iterations.

4. RESULTS AND DISCUSSION

The simulation of Taneda's25 experiment, of a separated Stokes ¯ow, with the computational mesh of

Figure 2 was the ®rst computer run of this work. Figure 4 shows the calculated streamlines and a

photograph taken from Taneda's experiments.34 Figures 4(a) and 4(b) are by inspection identical. It

can be clearly seen that the ¯ow is symmetrical, with the same streamline patterns upstream and

downstream of the obstacle. The separation points of the numerical predictions coincide with the

experimental observations, as does the distance of the vortex centres from the corners of the

obstacles.

The pressure and vorticity distributions of Figure 5, along with the streamline pattern in the whole

computational domain, also display the parallel characteristic of Stokes ¯ow in the vicinity of the

step. At the entrance of the channel, strong generation of vorticity and steep pressure gradients are

observed owing to the sudden deceleration of the ¯uid from the free stream velocity before the

Figure 4. Separated Stokes ¯ow around a surface-mounted obstacle: (a) numerical prediction of this work; (b) Taneda's
experiment25
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entrance to the no-slip boundary condition along the walls of the tunnel. The position of the obstacle

5 units downstream of the entrance permits both the entrance effects to fade gradually and the Stokes

characteristics in the distribution of streamlines, vorticity and pressure to develop freely and

undisturbed. A closer look at the distribution of pressure and vorticity in the vicinity of the obstacle is

shown in Figure 6, where it is clearly demonstrated how sharp the changes are of both magnitudes in

the corners of the obstacle and how symmetrically the isobars and vorticity contours develop with an

axis of symmetry on a vertical line through the middle of the step.

Next the results of the simulations of Acrivos' et al. experiments26 are shown in Figures 7±13.

They measured the length of the recirculation region downstream of a rectangular step, the pressure

distribution along the bottom of the tunnel downstream of the step and the velocity pro®les in the

recirculation region. Additionally, they showed a photograph with a typical streamline pattern at

Re � 70. In Figures 7 and 8 the calculated streamlines of this work are shown for 0:14Re4 70. The

length and width of the recirculation region increase gradually with increasing Reynolds number.

Figure 9 shows the effect of the Reynolds number on the recirculation length of the calculated

streamline patterns along with the corresponding experimental measurements of Acrivos et al. The

agreement between numerical and experimental data is within 27% at the lowest measured Reynolds

number and the discrepancy diminishes to zero as the Reynolds number increases. Figure 10 shows

the comparison of the calculated streamlines at Re � 70 with the photograph of Acrivos et al.

(Reference 26, p. 48). The numerical and experimental streamline patterns coincide in the length and

shape of the recirculation region but exhibit a discrepancy in the location of the vortex centre. Since

the experiments performed by Acrivos et al. were in the opposite direction to our analysis, for this

particular case the x-co-ordinate of the computed results in the plotter programme was reversed in

Figure 5. Separated Stokes ¯ow around a surface-mounted obstacle: (a) streamline pattern; (c) pressure distribution (b) vorticity
distribution
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order to facilitate the comparison with the experiment. Typical u-velocity pro®les for the ¯ow ®eld of

Figure 10 are shown in Figure 11 at four different locations along the tunnel with the corresponding

pro®les of the ¯ow in the absence of the step. The velocity pro®les in the empty tunnel are, as

expected, symmetrical, while the corresponding ones in the presence of the step exhibit an

acceleration due to the blockage effect of the step, which is most pronounced in Figures 11(b) and

11(c) which were taken on the step and in the recirculation region downstream respectively. As the

¯ow approaches the top of the tunnel, the velocity pro®les with and without the presence of the step

become identicalÐapart from Figure 11(d) where the ¯ow rearranges itself to channel ¯owÐ

Figure 6. Separated Stokes ¯ow around a surface-mounted obstacle: closer look at (a) vorticity and (b) pressure distributions

Figure 7. Numerical predictions of streamline patterns for ¯ow over a rectangular step for 0�14Re4 30
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Figure 8. Numerical predictions of streamline patterns for ¯ow over a rectangular step for 404Re4 70

Figure 9. Comparison of numerical predictions of this work with experimental data of Acrivos et al. for length of recirculation
region in limit of high Reynolds numbers for ¯ow over a rectangular step

Figure 10. Comparison of (a) numerical predictions of this work with (b) experimental data of Acrivos et al. for streamline
patterns at Re � 70 for ¯ow over a rectangular step
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Figure 11. Typical u-velocity pro®les at Re � 70 along tunnel with and without presence of step: (a) x � 0�5; (b) x � 1; (c)
x � 7�5; (d) x � 23

Figure 12. Comparison of numerical predictions of this work with experimental data of Acrivos et al. for pressure distribution
downstream of ¯ow over a rectangular step at (a) Re � 42�5 and (b) Re � 61�9
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showing that the aspect ratio 1:20 chosen for the numerical and physical experiments does not disturb

the ¯ow far away from the top of the step.

The pressure distributions are depicted in Figures 12 and 13. It is shown that the dimensionless

pressure is almost independent of the Reynolds number at the corner of the step and the pressure

gradient is nearly constant along the major portion of the recirculation region. The discrepancy

between the numerical predictions and the experimental data is close to 10% at Re � 42�5 and 20% at

Re � 61�9 in the wake. This relatively high discrepancy is most probably related to the inaccuracy in

the pressure measurement, as stated by Acrivos et al. (Reference 26, p. 40, lines 8±12), due to the

height of the step. In their work they also observed that by plotting the pressure versus a stretched co-

ordinate x̂ � x=Re the pressure variation should be independent of the Reynolds number. They also

developed a theory for that phenomenon especially applicable to the separated ¯ow past a circular

cylinder.35 In Figure 13 the numerical results for the pressure are shown as a function of the stretched

co-ordinate x̂ � x=Re along with the experimental data of Acrivos et al., where indeed their theory is

veri®ed for the pressure distribution inside the recirculation region and the inconsistency of their

model, as they state (Reference 35, p. 747), is also revealed in the region outside the wake, where the

discrepancy in the pressure for the two different Reynolds numbers increases.

Based on the agreement of the numerical computations with actual experimental data, predictions

were made at higher Reynolds numbers with the computational mesh of Figure 2. The results of the

numerical experiments are shown in Figure 14. The recirculation region increases with increasing

Reynolds number as observed earlier in the simulation of Acrivos et al.'s experiments in Figure 9. In

fact, the length of the recirculation region is 30 times greater than the actual height of the obstacle.

The calculations were stopped at Re � 275, since the primary interest was the estimation of the

length of the recirculation region. In order to make predictions at even higher Reynolds numbers, a

longer computational domain is needed, which is beyond the scope of this investigation.

In order to study the ¯ow phenomena around the obstacle at higher Reynolds numbers by ignoring

the length of the recirculation region, the computational domain must be placed in the development

of the recirculation region. The issue of the appropriate out¯ow boundary condition arises then14,21

and the free boundary condition is used for the ®rst time in this problem to enable predictions at high

Reynolds numbers with reasonable computational cost.

The ®rst computer run was the Stokes ¯ow of Figure 4 using the computational mesh of Figure 2,

where the length of the computational domain was cut in the middle of the width of the channel at 5�5

Figure 13. Comparison of numerical predictions of this work with experimental data of Acrivos et al. for pressure distribution
downstream of ¯ow over a rectangular step at Re � 42�5 and 61�9 as a function of stretched coordinate x̂ � x=Re
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and all other ¯ow conditions were kept the same. The results of the streamlines, vorticity contours

and isobars are shown in Figure 15. Comparing the results of the `long' domain of Figures 4(a) and 6

with those of the `short' domain of Figure 15.* there is only a slight distortion in the calculations at

the exit of the `short' domain, which is explained by the deviation of the u-velocity pro®le of the

`short' domain from the corresponding `correct' one of the `long' domain as shown in Figure 16. The

implementation of the free boundary condition in the limit of Stokes ¯ow permits the ¯uid to exit the

domain freely without any disturbance of the ¯ow phenomena in the interior almost up to the out¯ow.

Figure 14. Numerical predictions of streamline patterns for ¯ow over a square step at 1004Re4 275

Figure 15. Predictions of (a) streamlines, (b) vorticity contours and (c) isobars in limit of Stokes ¯ow over a square step with
out¯ow boundary of computational domain placed in middle of width of step

* It should be noted that the number of contours is not an indication of the strength of the recirculation.
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Next the length of the computational domain of the mesh of Figure 2 was cut at x � 13. Zeroth-

order continuation was used from Re � 0�02 to reach Re � 275, with intermediate Reynolds numbers

0�1, 1, 10 and 25 and then Re increased in steps of 25 up to 275. The streamline pattern at Re � 275

for the `short' domain is shown in Figure 17. Again, compared with the solution of the `long' domain

in Figure 14, there is only a slight distortion just at the arti®cial out¯ow boundary at x � 13, which is

demonstrated in the minor deviation of the u-velocity pro®le of the `short' domain compared with the

`correct' solution of the `long'domain as shown in Figure 18.

The satisfactory performance of the free boundary condition in this problem motivated further

computer runs up to Re � 2500 with the computational domain cut at length x � 13 in order to study

in more detail the ¯ow phenomena around the step at higher Reynolds numbers. The predicted

streamline patterns for the `short' computational domain at x � 13 are shown in Figure 19. With

increasing Reynolds number the recirculating eddy upstream of the step increases and downstream of

Figure 16. Comparison of u-velocity pro®le in `short' and `long' computational domains at out¯ow of `short' domain in limit of
Stokes ¯ow over a square step

Figure 17. Numerical prediction for streamline pattern of `short' computational domain for ¯ow over a square step at Re � 275
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Figure 18. Comparison of u-velocity pro®le in `short' and `long' computational domains at out¯ow of `short' domain for ¯ow
over a square step

Figure 19. Numerical predictions of streamline patterns of `short' computational domain ¯ow over a square step at
5004Re4 2500
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the step a secondary wake develops for Re5 1500. The shear stress distributions along the upstream

and downstream sides of the step are shown in Figures 20 and 21 respectively. Zero shear stress is

predicted at various points along the vertical sides of the step, which is compatible with kinematic

studies of ¯ows around surface-mounted obstacles reported by Hunt et al.,36 who applied topology

and kinematic principles for their theoretical and experimental investigations to connect the existence

of attachment and reattachment points with zero shear stress. The predictions of the pressure

distribution along the top of the step are shown in Figure 22. With increasing Reynolds number the

so-called `leading edge' singularity of the pressure over the step disappears owing to constant

displacement of the point of separation of the ¯ow on top of the step. The separation point has been

determined, following Bradshaw,37 by calculating the points along the sides of the obstacle where the

shear stress is zero and changes sign.

Figure 20. (a) Numerical predictions of shear stress distribution along upstream side of step for ¯ow over a square step at
0:024Re4 2500 and (b) detail of distribution

Figure 21. (a) Numerical predictions of shear stress distribution along downstream side of step for ¯ow over a square step at
0:024Re4 2500 and (b) detail of distribution
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5. CONCLUSIONS

A complete model for the ¯ow over a step has been designed, with improved in¯ow and out¯ow

boundary conditions, that can simulate actual physical experiments with satisfactory accuracy. Both

in the limit of Stokes ¯ow and at Reynolds numbers up to 70, based on the height of the step, the

discrepancy in the streamline pattern and the length of the recirculation region with available

experimental data is less than 27% and in the pressure distribution less than 20%. Predictions for the

length of the recirculation region and the shape of the streamlines are made up to Re � 275. The

implementation of the free boundary condition at the out¯ow of the computational domain, where the

wake is cut in its development, shows that the ¯uid leaves the ¯ow domain undisturbed, so that the

study of the ¯ow phenomena around the step is permitted for higher Reynolds numbers up to 2500. It

is predicted that a secondary eddy is formed downstream of the step, the leading edge singularity in

the pressure distribution disappears and the shear stress along the vertical sides of the step changes

sign owing to the existence of reattachment points.

The results of this work should be useful to workers who perform physical experiments in the

design of wind tunnels, since issues such as the proper aspect ratio of the height of the tunnel to the

height of the step and of the length of the tunnel with respect to the recirculation length are accurately

examined. The analysis can be extended to the turbulent ¯ow regime either by applying direct

numerical simulation or by using appropriate turbulence closure models based on the computational

model of this work.

After the establishment of the conventional Galerkin ®nite element method by Leone and Gresho24

in the calculation of the complex ¯ow phenomena of the ¯ow over a step, this work complements

their contribution by mesh re®nements and improved upstream and out¯ow boundary conditions and

represents the most accurate results for this problem in the laminar ¯ow regime, as demonstrated in

comparison with available experimental data.

Figure 22. Numerical prediction of pressure distribution along top of step for ¯ow over a square step at 104Re4 2500
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